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Abstract An essentially disconnected polyomino graph is defined as a polyomino
graph with some perfect matchings and forbidden edges. In this paper, we prove that
the subgraph, obtained by deleting all the forbidden edges, is disconnected and has at
least two elementary components, which generalizes the results for essentially discon-
nected benzenoid systems by Gutman et al. Furthermore, we show that if an essentially
disconnected polyomino graph has an unit square as one of its elementary components,
then it has at least three elementary components.
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1 Introduction

Polyomino graphs [1], also called chessboards [2] or square-cell configurations [3],
have attracted some mathematicians’ considerable attention, for many interesting com-
binatorial subjects are yielded from them, such as hypergraphs [1], domination prob-
lem [2,4], rook polyominal [5], etc. Additionally, Motoyama and Hosoya obtained
some interesting results by introducing king and domino polyomials, which can be
applied in statistical physics and in modeling problems of surface chemistry [5,6].
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(a) (b) (c)
Fig. 1 a A polyomino graph G. b A cut segment. c A g-cut segment

A polyomino graph is a connected geometric graph obtained by arranging congruent
regular squares of side length 1 (called a cell) in a plane such that two squares are
either disjoint or have a common edge (see Fig. 1a). A generalized polyomino H is a
subgraph of a polyomino graph G and has at least one edge which does not belong to
any square of H . A perfect matching of a graph G is a set of independent edges of
G covering all vertices of G. The perfect matching problem of polyomino graphs is
closely related to the dimer problem in crystal physics [7,8]. An edge of a polyomino
graph G with perfect matching is said to be a forbidden single (double) edge if it
belongs to none (all) of the perfect matchings of G and allowed otherwise. An edge
is said to be a forbidden edge if it is either a forbidden single edge or a forbidden
double edge. A polyomino graph G is said to be elementary if it has no forbidden
edge. Otherwise, it is said to be essentially disconnected (the term “essentially dis-
connected” is used to indicate those polyhexes with perfect matching and fixed bonds
by Cyvin and Gutman [9]).

The structural features of essentially disconnected benzenoid systems are already
known in [10,11]. In this paper, we concentrate ourselves on polyomino graphs and
prove that their structural feature is similar to that of polyhex graphs.

2 Definitions and notations

Let G be a polyomino graph, C the outer perimeter of G. The following concept of
special edge cut plays an important role in our investigations.

Definition 1 ([12]) A straight line segment P1 P2 is called a cut segment of G if

(1) each of P1 and P2 is the center of an edge on the outer perimeter C ;
(2) P1 P2 and all edges of G form an angle of π/4;
(3) any point of P1 P2 is either an interior or a boundary point of some square of G.

(see Fig. 1b).

Definition 2 ([12]) A broken line segment P1 Q P2 is called a generalized cut segment
(g-cut segment) of G if

(1) each of P1 and P2 is the center of an edge on the outer perimeter C ;
(2) P1 Q and P2 Q form an angle of π/2, and Q is the center of some edge e which

is the bisector of the right angle � P1 Q P2;
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(3) any point of P1 Q P2 is either an interior or a boundary point of some square of
G. (see Fig. 1c).

A special cut segment is either a cut segment or a g-cut segment. A special edge
cut R is the set of edges of G intersected by a special cut segment. Obviously, two
special edge cuts are disjoint if their corresponding special cut segments are disjoint.

By the definition of polyomino graphs, it is easy to check that a polyomino graph
G is a bipartite graph. Thus polyomino graphs are 2-colorable. In the following, we
assume that all the vertices of G are colored black or white such that any two adjacent
vertices of G are differently colored. We denote the sets of white and black vertices
of G by W (G) and B(G), respectively. Let E be a special edge cut of G. G − E is
the subgraph of G obtained by deleting all the edges of E .

In [13], a necessary and sufficient condition for a polyomino graph with perfect
matchings to be essentially disconnected was given.

Theorem 2.1 ([13]) Let G be a polyomino graph with the perfect matching, C the
outer perimeter of G. Then G is essentially disconnected if and only if G possesses a
cut or g-cut R, satisfying

(1) |B(G1)| = |W (G1)| and |B(G2)| = |W (G2)|, where Gi (i = 1, 2) are the two
components of G − R;

(2) all the edges of R are forbidden single edges.

The above theorem implies that for an essentially disconnected polyomino graph G,
deleting the forbidden edges which form a special edge cut, the subgraph G − R is
not connected and has at least two connected components.

3 Elementary components

In this section we prove that for each component Gi (i = 1, 2) of G − R, there exist
some allowed edges, which implies that Gi is elementary or contains an elementary
subgraph.

Let G be a polyomino graph, A be a set of vertices of G. G− < A > designates the
subgraph obtained by deleting all the vertices of A together with their incident edges.
For a perfect matching M of G, an M-alternating cycle is a cycle whose edges are
alternate in M and E(G) − M , where E(G) is the edge set of G.

Lemma 3.1 Let G be a polyomino graph, C the perimeter of G, v1, . . . , vt be t ver-
tices on the perimeter C of G, A = {v1, . . . , vt }. Suppose that in G − <A>, the
perimeter C of G is broken into t segments with even lengths (i.e. odd vertices). If
G − <A> has a perfect matching M, then G − <A> has an M-alternating cycle.

Proof Let G be a graph with n vertices, m edges, s squares and p external edges (i.e.
the edges lying on the perimeter of G). Then G has m − p internal edges (i.e. the edges
not lying on the perimeter of G). Since each internal edge belongs to two squares, we
have 4s = 2(m − p) + p, i.e.

m = 2s + p/2. (1)

123



J Math Chem (2010) 47:496–504 499

By Euler’s formula which says that for a connected plane graph, the number of vertices
plus the number of faces is equal to the number of edges plus two [14], we have
n + (s + 1) = m + 2, i.e.

n − m + s = 1. (2)

which together with (1) yields

n − s − p/2 = 1. (3)

On the other hand, suppose that the perfect matching M of G − <A> contains r
external edges of G and hence has (n − t)/2 − r internal edges of G. If none of the
squares of G − <A> is an M-alternating cycle, then at most one edge of each square
of G belongs to M . Hence we have s ≥ r + 2((n − t)/2 − r), i.e.

s ≥ n − r − t. (4)

In G − <A> the perimeter C of G is broken into t segments, and each of which
contains an even number of edges. Therefore, we have: r ≤ (p − 2t)/2, i.e.

r ≤ p/2 − t. (5)

Substituting (5) back into (4) we obtain: s � n − p/2 i.e.

n − s − p/2 � 0. (6)

Formula (6) is evidently in contradiction with formula (3). The contradiction means
that the assumption about the non-existence of M-alternating cycle which is a square
is false. The proof is completed. ��
Theorem 3.2 If G is an essentially disconnected polyomino graph, then the subgraph
obtained from G by deleting all the forbidden single edges and all the end vertices of
the forbidden double edges is disconnected.

Proof By Theorem 2.1, G has a special edge cut R such that the edges of R are for-
bidden single edges. Then after deleting all the forbidden single edges of R, G has
at least two connected components G1 and G2. Each of them may be a component
with or without some pendent edges. In the following, we prove that each component
Gi has some allowed edges, i.e. Gi has an elementary component which is also an
elementary component of G. We distinguish two cases:

Case 1 Suppose that Gi has no pendent edge. Then Gi is itself a polyomino graph.
Thus by Lemma 3.1, Gi has some allowed edges (note that all the edges on an
M-alternating cycle are allowed edges). Thus, after deleting all the forbidden sin-
gle edges and all the end vertices of the forbidden double edges, Gi has a component
consisting of allowed edges, i.e. an elementary component. It is clear that this elemen-
tary component is also an elementary component of G and is an elementary polyomino
graph.

123



500 J Math Chem (2010) 47:496–504

Case 2 Suppose that Gi has some pendent edges, say ui jvi j ( j = 1, 2, . . . , s), where
ui j is a vertex of degree 1 in Gi . Since G is a polyomino graph with perfect match-
ings and all the edges of R are forbidden single edges, all the pendent edges ui jvi j

( j = 1, 2, . . . , s) of Gi are forbidden double edges. By deleting all the pendent edges
ui jvi j ( j = 1, 2, . . . , s) together with the end vertices ui j , we obtain a polyomi-
no graph G∗

i . Put Ai = {vi1, vi2, . . . , vis}. Then G∗
i − Ai has a perfect matching

Mi − {ui j , vi j }, where Mi is a perfect matching of Gi . Keep in mind the definition of
special edge cut, one can check that Ai satisfies the condition in Lemma 3.1. Therefore,
G∗

i − Ai has some allowed edges. Consequently, G∗
i − Ai has at least an elementary

component which is also an elementary component of G and is an elementary polyo-
mino graph.

Therefore, we come to the conclusion that G has at least two elementary compo-
nents, one from G1, and the other from G2. Each of them is an elementary polyomino
graph. ��

4 Small elementary components

The size of the elementary components may influence their numbers of elementary
components. We will show it in this section. We need the following two lemmas.

Lemma 4.1 Let G be a generalized polyomino graph with at most one pendent edge,
M be a perfect matching of G.Then G has a square containing two double edges in M.

Proof Assume that G has n vertices, m edges, and s squares. Further, assume that
G has p external edges, then G has m − p internal edges. By the assumption, we
distinguish two cases.

Case 1 G has no pendent edge. Then G is a polyomino graph with perfect matchings.
Since each internal edge belongs to two squares, we have: 4s = 2(m − p) + p, i.e.

m = 2s + p/2. (7)

By Euler’s formula, we have n + (s + 1) = m + 2, i.e.

n − m + s = 1. (8)

which together with (7) yields

n − s − p/2 = 1. (9)

On the other hand, suppose that the perfect matching M of G contains r external edges
of G and hence has n/2 − r internal edges of G. If none of the squares of G is an
M-alternating cycle, then at most one edge of each square of G belongs to M . Hence
we have s ≥ r + 2(n/2 − r), i.e.

n − r − s � 0. (10)
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(b)(a)
Fig. 2 a Illustration for the proof of Lemma 4.1 b Illustration for Lemma 4.2

It is evident that we have r ≤ p/2. Hence n − s − p/2 � 0, which contradicts with
formula (9). This contradiction implies that G has a square which is an M-alternating
cycle.This square contains two double edges in M .

Case 2 G has one pendent edge e (see Fig. 2a). Then the edge e is a forbidden dou-
ble edge, and both e1 and e2 are forbidden single edges. Hence we have 4s + 1 =
2(m − p) + p, i.e.

m = 2s + p/2 + 1/2. (11)

By Euler’s formula, we have

n − m + s = 1. (12)

which together with (11) yields

n − s − p/2 = 3/2. (13)

On the other hand, suppose that the perfect matching M of G contains r external
edges of G. Since both e1 and e2 are forbidden single edges, G has n/2 − r internal
edges. If none of the squares of G is an M-alternating cycle, then at most one edges
of each square of G belongs to M . Hence we have: s ≥ r + 2(n/2 − r), i.e.

n − r − s � 0. (14)

It is evident that we have: r ≤ (p − 3)/2 + 1 i.e.

r � p/2 − 1/2. (15)

which together with (14) yields

n − s − p/2 � −1/2. (16)

Formula (16) is evidently in contradiction with formula (13). Hence G has a square
which is an M-alternating cycle. This square contains two double edges in M . There-
fore, the lemma is completely proved. ��
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Fig. 3 Illustration for the separating edge e

Before continuing we introduce some notations. Let G be a polyomino graph, e an
edge of G, e1 and e2 the edges of G which are parallel to each other and adjacent to
the edge e, s the square which contains the edges e, e1 and e2 (note that s may or may
not be a square of G). Let Ls,e denote the segment of the perpendicular bisector of
e which starts from the midpoint of e and ends at the central point of s if s does not
belong to G, and otherwise passes through s, ends at the perimeter of G and is totally
contained in the interior region of G (see Fig. 2b).

Similar to the proof of Lemma 3 of [15], we have the following conclusion.

Lemma 4.2 Let G be a polyomino graph, M be a perfect matching of G and e be a
forbidden single edge of G. If the edges e1 and e2 of M which cover the end vertices of
e belong to a square s (s may or may not belong to G), then the edges of G intersecting
Ls,e are all forbidden single edges (see Fig. 2 b).

Definition 3 An edge of a polyomino graph G is said to be a separating edge if the
removal of its end vertices disconnects G.

If e is a separating edge, let H(e) and H(e)′ denote the polyomino graph obtained
by splitting G at the separating edge e such that H(e) and H(e)′ only have one common
edge e (see Fig. 3).

Theorem 4.3 If a polyomino graph H with more than one square has an elementary
component which is an unit square, then H has at least three elementary connected
components, each of which is an elementary polyomino graph.

Proof Let s be the square which is an elementary component. Then all edges are for-
bidden single edges. Let M1 be a perfect matching of H in which the vertices of s are
matched themselves. Let M2 be the perfect matching obtained by rotating M1 along s.
We distinguish two cases:

Case 1 There is an edge e which is a separating edge of H in the square s. Without
loss of generality, let H(e) contain s, and e belong to M1. Evidently M1 ∩ H(e)′ is a
perfect matching of H(e)′. Moreover, the two edges of H(e)′ which are adjacent to e
are forbidden single edges of H(e)′. Otherwise, they are not forbidden single edges in
H , which contradicts with the assumption. Thus, H(e)′ is an essentially disconnected
polyomino graph and H(e)′ has at least two elementary components by Theorem 3.2.
It can be checked that each of the elementary components of H(e)′ is also an ele-
mentary component of H . So H has at least three elementary connected components,
one from H2, one from H3, and another is just the unit square s. Each of them is an
elementary polyomino graph.
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(a) (b)
Fig. 4 a Illustration for Theorem 4.3. b Illustration for subcase 1 of Theorem 4.3

Case 2 None of the edges in s is separating edge of G. So there are at least two squares
s1, s2 which are adjacent to s (two squares are adjacent if they share a common edge).
Furthermore, there is a square s3 which is simultaneously adjacent to s1 and s2 (see
Fig. 4a). Let e1, e2, e3, e4, e5, e6, e7, a, b, c and d be the edges as shown in Fig. 4a.
Also let s4 (which may or may not belong to H ) denote the square shown in Fig. 4a.
Without loss of generality, let e1 and e2 belong to K1(see Fig. 4a). There are two
subcases:

Subcase 1 Suppose that e3 belongs to K1 (see Fig. 4b). It is in K2 as well. Considering
K2, all edges intersecting Ls1,a and Ls4,c are forbidden single edges by Lemma 4.2.
Similarly, considering K1, the edges intersecting Ls2,b are forbidden single edges by
Lemma 4.2. Let H ′ be the subgraph obtained by deleting the forbidden single edges
which intersect Ls1,a , Ls4,c and Ls2,b from H , but not their end vertices. Let H1 and
H2 be the two connected components of H ′ which contain e2 and e7, respectively (see
Fig. 4b). Both of them are polyomino graphs. Considering K1, both H1 and H2 contain
an elementary component of H by Lemma 4.1. Thus H has at least three elementary
components, one from H2, one from H3, and another is just the unit square s. Each of
them is an elementary polyomino graph.

Subcase 2 Suppose e3 does not belong to K1. Obviously, the two edges a and d are
forbidden single edges. Considering K1, b and s2, the edges intersecting Ls2,b and Ls4,c

are forbidden single edges (see Fig. 5). Let H3 be the subgraph obtained by deleting
the two forbidden single edges a, d (but not their end vertices) and all the forbidden
single edges intersecting Ls2,b from H (see Fig. 5). And H3 which contains e2 is a
polyomino graph with a perfect matching H3 ∩ K1. Then H3 contains an elementary
component of H by Lemma 4.1. Also as in subcase 1, H2 contains anther elementary
component of H . So H has at least three elementary connected components, one from
H2, one from H3, and another is just the unit square s. Each of them is an elementary
polyomino graph. The theorem is completely proved. ��
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Fig. 5 Illustration for subcase 2
of Theorem 4.3
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